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ABSTRACT: A new method for exact analytical calculation of the accessible
surface areas and their gradients with respect to atomic coordinates is described.
The new surface routine, GETAREA, finds solvent-exposed vertices of
intersecting atoms, and thereby avoids calculating buried vertices which are not
needed to determine the accessible surface area by the Gauss]Bonnet theorem.
The surface routine was implemented in FANTOM, a program for energy
minimization and Monte Carlo simulation, and tested for accuracy and efficiency
in extensive energy minimizations of Met-enkephalin, the a-amylase inhibitor

Ž .tendamistat, and avian pancreatic polypeptide APP . The CPU time for the
exact calculation of the accessible surface areas and their gradients has been

Ž . Ž .reduced by factors of 2.2 Met-enkephalin and 3.2 tendamistat compared with
our previous approach. The efficiency of our exact method is similar to the
recently described approximate methods MSEED and SASAD. The performance
of several atomic solvation parameter sets was tested in searches for low energy
conformations of APP among conformations near the native X-ray crystal
structure and highly distorted structures. The protein solvation parameters from

w Ž .xOoi et al. Proc. Natl. Acad. Sci. USA, 84, 3086 1987 and from Wesson and
w Ž .xEisenberg Prot. Sci., 1, 227 1992 showed a good correlation between solvation

energies of the conformations and their root-mean-square deviations from the
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Introduction

Ž . 1he accessible surface area ASA of proteinsT is central for computing the effect of protein
solvation. The free energy of protein solvation2, 3 is
linearly related to the ASA in a continuum ap-
proach,4, 5 and this energy term has been used with
some success to recognize native or native-like
folds of proteins and to distinguish these folds
from nonnative compact folds.6 ] 8 The first meth-
ods for analytical surface area calculation, intro-
duced by Connolly9 and Richmond,10 have been
improved in recent years,11 ] 17 as reviewed in
Braun.18 Computational efficiency has been in-
creased primarily by using a probabilistic approxi-
mation in the calculation of the surface area.19 ] 21

Other methods relied on fast search methods to
find exposed vertices in an approximate way,22 or
proposed numerical approximations in the calcu-
lation of the gradient.23 Calculation of free ener-
gies in solution is currently limited to small
polypeptides24, 25 due to the vast amount of com-
puter time needed. Solvation terms have been in-
cluded for proteins in energy minimizations,12, 26, 27

Monte Carlo simulations,28 molecular dynamics
calculations,29 ] 31 and protein]protein docking
studies.32 To be useful for energy minimization,
Monte Carlo simulations, or molecular dynamics
calculations, the accessible surface areas and their
derivatives with respect to the atomic coordinates
must be analytically calculated.

In this article, we describe a new method for
calculating both the surface area and the gradient
exactly and efficiently. We use the intersection of

Ž .half-spaces IHS , defined by the planes of two-
sphere intersection, to find all solvent exposed
vertices of intersecting atoms in an efficient way.
Geometric inversion transforms the intersection
planes into a set of points in the dual space. The
convex hull of these points corresponds to a dual
space image of the desired IHS. The vertices of a
Gauss]Bonnet path9, 10, 33 can be quickly found by
intersecting edges of the IHS with the central atom
sphere. Our new method avoids the calculation of

a large number of buried vertices that are not
needed for calculation of the accessible surface
area by the Gauss]Bonnet theorem.28, 33 This
approach was implemented as a new routine,
GETAREA, in our energy minimization and Monte
Carlo simulation package, FANTOM.34 We show
here that the new surface routine, which is a factor
of two to three times faster than our previous
routine,28 is almost as efficient as the approximate
methods implemented in MSEED22 and SASAD.23

Including a solvation energy term in the energy
minimization by the new version of FANTOM35

adds computational cost of about the same magni-
tude as used for energy minimization in vacuo.

Three protein-solvation models were tested for
their capability to characterize native or near-na-
tive structures as local minima with low energy
values by extensive energy minimizations of the

Ž .avian pancreatic polypeptide APP . We mini-
mized the conformational energy including the
protein solvation term of 268 APP conformations
which had low in vacuo energy values and differed

˚from the native structure in the range of 1]6 A
root-mean-square deviation for backbone atoms.
The conformation with lowest energy had the cor-
rect topology in all three solvation parameter sets.
The conformation with the lowest total energy
value was considerably improved for the empiri-
cally derived parameters from Ooi et al.5 and from
Wesson and Eisenberg parameters29 as compared
with the conformation with lowest in vacuo
energy.

Methods

PARAMETERIZATION OF MOLECULAR
ACCESSIBLE SURFACE AREA

As proposed by Eisenberg and McLachlan,4 the
free energy of protein]solvent interaction can be
approximately derived from the solvent-accessible

Ž .surface areas ASA A of atoms i by the follow-i
ing linear relation:

Ž .E s s A 1Ýh y d i i
igatoms
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where s is an empirical solvation parameter de-i
pending on the atom type. Atoms are treated as
spheres with an ASA radius equal to the corre-

˚sponding atomic van der Waals radius plus 1.4 A,
as defined by Richards.1b Only atoms at a distance
less than the sum of corresponding ASA radii will
mutually influence their accessible surface areas.

The atomic ASA can be exactly calculated from
the global Gauss]Bonnet theorem9, 10, 33:

p
2 i i iŽ . Ž .A s r 2p 2 y x q V q F cos QÝi i i l , lq1 l l

ls1

Ž .2

where p is the number of intersecting arcs l
Ž .defining ASA the ‘‘Gauss]Bonnet path’’ , r is thei

ASA radius, x stands for the Euler]Poincare char-´i
acteristic33 of a given ASA region, V i is thel, lq1
angle between vectors tangential to the accessible
arcs; F i is the arc length in angular units, and Q i

l l

denotes the polar angle of the intersection circle
Ž .see Fig. 1 .

We present a modified vector parameterization
for the intersection points of accessible arcs that,

FIGURE 1. Part of the Gauss]Bonnet path enclosing
the solvent-accessible surface of central atom i. The
path is composed of a certain number of accessible
arcs, l, which are parts of the intersection circles with
other atoms. V i is the angle between vectorsl, lq1
tangential to the two consecutive arcs, F i is the anglel

defining arc length, and ai denotes the radius of thel

intersection circle.

unlike our previous approach,12, 28 treats all neigh-
bor atoms equivalently. This simplifies calculation
of the gradient. In the first step we calculate the
intersection points from Cartesian coordinates of

Ž .the central and neighbor atoms x and their radiik
Ž .r . A number of auxiliary vector and scalar quan-k
tities are defined below36 and illustrated in Fig-
ure 2:

i Ž .x s x y x 3k k i

i < i < Ž .d s x 4k k

i i i Ž .m s x rd 5k k k

2i 2 2Ž .d q r y rk i ki Ž .g s 6k i2 dk

2i 2 iŽ . Ž .'a s r y g 7k i k

FIGURE 2. Vector parameterization of the
Gauss]Bonnet path. An accessible arc is part of the
intersection circle generated by central atom i and a
neighbor atom k. Two other neighbor atoms, j and l,
define the arc’s vertices: P i and Q i . These points arek j kl
parameterized as vector sums: P i = h i + g i v andk j k j k j ik j
Q i = hi y gi v , where h i # is the midpoint of akl kl kl ikl k
segment generated by two crossing circles of
intersection, and g i#v # points to one of the segment’sk ik
ends. See text for detailed description of other
parameters.
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i i i Ž .cos f s m (m 8k j k j

i i i i i Ž .h s t m q t m 9k j k j k jk j

g i y g i cos f i
k j k ji Ž .t s 10k j 2 isin fk j

mi = mi
k j Ž .v s 11i k j isin fk j

i 2 i i i i Ž .g s r y g t y g t 12'k j i k k j j jk

A unit vector mi points from the central atom ik
toward the k th neighbor atom; g i and ai are thek k
polar distance to the center of the circle of intersec-

Ž .tion COI with the k th atom and its radius, re-
spectively; h i is the midpoint of the segmentk j
defined by the intersection of the k th and jth
COIs; 2g i is the total length of this segment. Ak j
unit vector, v , is perpendicular to both mi andi k j k
mi and parallel to the COI intersection segment.j
To ensure equivalency of neighbor atoms a

Ž i i .nonorthogonal basis set m , m , and v wask j i k j
used.

The implementation of the global Gauss]Bonnet
theorem used by Richmond10 originally calculated
the buried surface area of atom i which, subtracted
from 4p r 2, yields the value of ASA. For thisi
reason, the right-handed orientation of the
Gauss]Bonnet path defining the buried surface
becomes left-handed with respect to the accessible

Ž .surface Fig. 1 . This orientation allows us to un-
ambiguously define the intersection points or ver-
tices, P i and Q i , of an accessible arc belonging tok j k l

Ž .the k th COI intersected by spheres j and l Fig. 2 :

P i s h i q g i vk j k j k j i k j Ž .13
Q i s h i y g i vk l k l k l i k l

The next step yields unit vectors tangential to the
accessible arc at its intersection points:

mi = P i
k k ji kn sj iak Ž .14

mi = Q i
k k li km sl iak

Ž .All quantities in eq. 2 can now be calculated from
these tangential vectors:

i i k i j Ž .V s yarccos n (m 15Ž .jk j k

Ž .There is a minus sign in eq. 15 , because, for
intersecting spheres, all tangential angles are nega-
tively oriented.33 The angular arc length, F i k, canjl

be calculated from the arcus cosine of the scalar
product of two tangential vectors, ni k (mi k. Thisj l

gives either the angular length of the accessible
arc, or that of the complementary arc.28 In the
second case, the value of the arcus cosine must be
subtracted from 2p . Both cases are handled by one

w Ž .x i kequation eq. 16 , where S is the sign of relativejl

orientation of the axial vector, mi , and the tangen-k
tial vectors:

i k i k i k i k i k Ž .F s 1 y S p q S arccos n (m 16Ž . Ž .jl jl jl j l

i k i i k i k Ž .S s sign m ( n = m 17Ž .ž /jl k j l

Finally, the polar angle of the k th COI is simply:

i i Ž .cos Q s g rr 18k k i

GRADIENT OF MOLECULAR ACCESSIBLE
SURFACE AREA

We calculate the gradient of the accessible sur-
face area in a multilevel computational scheme.
All quantities calculated at an nth level depend on
the results of levels 1 through n y 1. This scheme

Žis highly suitable for machine processing either
.scalar, or parallel and is efficient in CPU time and

memory demand. Detailed derivation of the gradi-
ent is presented below37; all indices correspond to
Figure 2:

Level 1:

­ g i di y g i
k k k i Ž .s m 19ki i­ x dk k

­mi 1k i iŽ . Ž .s I y m m m 20k ki i­ x dk k

Level 2:

­ cos f i 1k j i i i Ž .s m y cos f m 21Ž .j k j ki i­ x dk k

­ cos Q i 1 ­ g i
k k Ž .s 22i iž /r­ x ­ xik k

VOL. 19, NO. 3322



ACCESSIBLE SURFACE AREAS

Level 3:

­t i 1k j si 2 i­ x sin fk k j

i i­ g ­ cos fk k ji i Ž .= q g y 2t 23Ž .j jki iž / ž /­ x ­ xk k

i i­t 1 ­ gjk kis ycos fk ji 2 i iž /­ x sin f ­ xk k j k

i­ cos fk ji i Ž .q g y 2t 24Ž .k k j iž /­ x k

­v cos f i ­ cos f i
i k j k j k js v mi k ji 2 i iž /­ x sin f ­ xk k j k

i1 ­mki Ž .y m = 25ji iž /sin f ­ xk j k

Level 4:

i i­g tk j k j i i i i i Ž .s t m y d y t m 26Ž .jk j k k j ki i i­ x g dk k j k

­ h i ­t i ­t i ­mi
k j k j jk ki i is m m q m m q tk j k ji i i iž / ž / ž /­ x ­ x ­ x ­ xk k k k

Ž .27

Level 5:

­ P i ­ h i ­g i ­vk j k j k j i k jis q v m q gi k j k ji i i iž /ž / ž /­ x ­ x ­ x ­ xk k k k

Ž .28

­ Q i ­ h i ­g i ­vk l k l k l i k lis y v m y gi k l k li i i iž /ž / ž /­ x ­ x ­ x ­ xk k k k

Ž .29

Level 6:

i k i i i­ n 1 g ­ g ­ Pj k k k ji k is n m q m =j ki i i i iž / ž /­ x a a ­ x ­ xk k k k k

i­mki Ž .yP = 30k j iž /­ x k

i k i i i­ m 1 g ­ g ­ Ql k k k li k is m m q m =l ki i i i iž / ž /­ x a a ­ x ­ xk k k k k

i­mki Ž .yQ = 31k l iž /­ x k

i j i­ m 1 ­ Pk k ji Ž .s m = 32ji i iž /­ x a ­ xk j k

i l i­ n 1 ­ Qk k li Ž .s m = 33li i iž /­ x a ­ xk l k

Level 7:

i i k i j­ V 1 ­ n ­ mjk j ki j i ks m ( q n (k ji i i iž / ž /< <­ x sin V ­ x ­ xk jk k k

Ž .34

Level 8:

i k i k i k i k­ F S ­ n ­ mjl jl j li k i ksy m ( qn (l ji i k i iž / ž /< <­ x sin F ­ x ­ xk jl k k

Ž .35

i j i j i j­ F S ­ mjy1, k jy1, k ki j Ž .s y n ( 36jy1i i j iž /< <­ x sin F ­ xk jy1, k k

i l i l i l­ F S ­ nk , lq1 k , lq1 ki l Ž .s y m ( 37lq1i i l iž /< <­ x sin F ­ xk k , lq1 k

i i­ A ­ V ­ Vi jk k l2s r qÝi i iž / ž /­ x ­ x ­ xk k kj, k , lgK

­ cos Q i ­ F i k
k jli k iqF q cos Qjl ki iž / ž /­ x ­ xk k

i j i l­ F ­ Fjy1, k k , lq1i iqcos Q q cos Qj li iž / ž /­ x ­ xk k

Ž .38

­ A ­ Ai i Ž .s y 39Ý ž /­ x ­ xi kj, k , lgL

Any remaining equations not included in this
derivation can be obtained by index exchange and
from the following symmetry properties: f i s f i ;k j jk
h i s h i ; v s yv ; g i s g i ; P i s Q i ;k j jk i k j i jk k j jk k j jk
ni k s ymk i; V i s V i ; Sik s Sk i; F i k s F k i.j j k j jk jl l j jl l j

DETERMINATION OF GAUSS]BONNET PATH

Two methods are implemented in GETAREA to
further reduce the CPU time for calculating the
Gauss]Bonnet vertices. The first, the cubic lattice,
is a standard method in distance geometry 38 and
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molecular dynamics calculations.39 Potential
neighbor atoms are found by searching the nearest
environment of each atom, not the entire molecule.
The 3D space is divided by a cubic grid, the unit
length of which is twice the maximal atomic ra-
dius. The search for neighbor atoms is restricted to
the atom’s own cell and the 26 surrounding cells.

We introduce here the second method: a new
Ž .algorithm of intersecting half-spaces IHS for sur-

face area and gradient calculations. Figure 3 illus-
trates some basic ideas of intersecting half-spaces
and their relation to accessible arcs in two dimen-
sions. A central atom sphere, S, intersects two
neighboring atoms, K and K . The surface of the1 2
central sphere, dS, is completely or partially cov-
ered by that of its neighbors. Each neighbor sphere
generates half-spaces, H and H respectively,1 2
which are bounded by a plane containing the circle
of intersection and contain those parts of the sur-
face, dS, which are not buried by K and K . The1 2
accessible area dS of the surface of the centralacc

( )FIGURE 3. Two half-spaces H and H , shaded areas1 2
( )defined by two spheres K and K intersecting a1 2

central atom S. Intersection of H l H and the central1 2
sphere surface, d S, defines accessible surface d Sacc
( )thick dashed line .

atom is give by:

Ž .dS s dS l H l H 40acc 1 2

In the general case of N spheres, the accessible
surface dS of S can be found by the intersectionacc
of N half-spaces:

N

Ž .dS s dS l H 41Facc i
is1

where IHS ' F N H , the intersection of half-is1 i
Žspaces, can be a convex polyhedron polygon in

.2D , or an unbounded convex polyhedral cone
Ž .Fig. 3 . In any case, parts of dS contained within
the IHS are accessible to the solvent. Faces of the
IHS correspond to the neighbor atoms, but only
those faces that intersect dS actually contribute to
the formation of the Gauss—Bonnet path. If none
of the faces contact dS, then the central atom is
‘‘inside’’ the protein and totally inaccessible to the
solvent. Therefore, the IHS defines the topology
of the corresponding central atom in the protein
molecule.

There are standard methods to obtain an inter-
section of N arbitrary half-spaces in 3D40 by com-

Ž .putational geometry Fig. 4 . First, the distance
vectors to every half-space boundary from the

Ž .atom center are determined Fig. 4a . These vectors
are subsequently transformed through geometric
inversion, which maps a vector with spherical po-

Ž .lar coordinates R, u , f to the dual-space vector
1Ž . Ž .with coordinates , u , f Fig. 4b . A ‘‘half-space’’R

with the boundary plane placed at infinity must be
included to represent cases where IHS is a polyhe-
dral cone. This half-space transforms directly into
the center of geometric inversion. In practical
terms, finding the convex hull is equivalent to
eliminating irrelevant neighbor atoms. In the next

Žstep, a convex hull of the inverted points plus the
.center is calculated by adapting an incremental

algorithm.41 Half-spaces that do not contribute to
the boundary of IHS correspond to points in the
dual space that are internal with respect to the

Ž .convex hull Fig. 4c . Consequently, only the
‘‘boundary half-spaces’’ are transformed into ver-
tices of the convex hull. It can be proven40 that the
geometric inversion of distance vectors to the faces
of the convex hull shown in Figure 4c leads to the
vertices of the IHS shown in Figure 4d. The
Gauss]Bonnet path can now be determined di-
rectly, as the edges of IHS cross the surface of S at
exactly the vertices of accessible arcs P i and Q i .k j k l
However, due to rounding errors, it is better to

Ž .recalculate these intersection points from eq. 13 .
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FIGURE 4. Step-by-step procedure for finding the IHS
( )polyhedron. a Find distance vectors to every half-space

( )boundary. b Transform distance vectors by geometric
( )inversion. c Find convex hull of transformed points;

find distance vectors to the faces of the convex hull.
( )d Transform convex hull distance vectors by geometric
inversion; the transformed points are vertices of the IHS
polyhedron.

Ž . Ž .Eqs. 3 ] 39 are included in the new surface
routine GETAREA. GETAREA has been integrated
into the program FANTOM34 for studies on pro-
tein solvation using energy minimization and
Monte Carlo simulation.

STRUCTURE GENERATION AND ENERGY
MINIMIZATIONS OF AVIAN PANCREATIC
POLYPEPTIDE

Atomic Solvation Parameters

As in our previous work12, 27, 28 we test a simple
one-parameter set, APOLAR, which calculates the

˚2protein solvent interaction as 0.025 kcalrmol ? A
for the nonpolar accessible surface area, as initially
estimated by Chothia,42 and two classical solvation
parameter sets, OONS5 and WWE,29 which were
statistically derived by a many-parameter fit of
transfer free energies. All solvation parameters and
atomic radii are summarized in Table I.

Initial Structure for MC Simulations

The crystal structure of the avian pancreatic
Ž .polypeptide APP hormone from turkey Meleagris

43 Ž 44gallopavo Brookhaven Protein Data Bank file
.1PPT was regularized to standard bond lengths

and valence angles by the program DIAMOD,45

using 20,000 distance constraints between 301

TABLE I.
Atomic Solvation Parameters and van der Waals Radii.

2˚ ˚( ) ( )Atomic solvation parameters kcal / mol ? A Radius A
a b c d eAtom type OONS WWE APOLAR S & R Ooi

Aliphatic C 0.008 0.012 0.025 2.00 2.00
Carbonyl or 0.427 0.012 0.025 1.50 1.55
carboxyl C
Aromatic C y0.008 0.012 0.025 1.85 1.75
Amide N y0.132 y0.116 0.000 1.50 1.55
Amine N y0.132 y0.186 0.000 1.50 1.55
Carbonyl or y0.038 y0.116 0.000 1.40 1.40
carboxyl O
Carbonyl or y0.038 y0.175 0.000 1.40 1.40

ycarboxyl O
Hydroxyl O y0.172 y0.116 0.000 1.40 1.40
Thiol S y0.021 y0.018 0.000 1.85 2.00
Sulfur S y0.021 y0.018 0.025 1.85 2.00

aSolvation parameters from Table 1 of ref. 5.
bSolvation parameters from Table 3 of ref. 29.
cSolvation parameters according to Chothia.4 2

dThe van der Waals radii from Table 2 of ref. 48 used for WWE and APOLAR sets.
eThe van der Waals radii from Table 1 of ref. 5 used for OONS parameter set.
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heavy atoms. The regularized structure used in
our study as initial structure for the Monte Carlo
simulation deviated from the X-ray crystal coordi-

˚ ˚nates only by 0.26 A and 0.48 A RMSD for back-
bone and heavy atoms, respectively.

Generation of Local Minima Structures and
Energy Refinement

Starting from the regularized structure, an en-
semble of APP conformations was generated by
the modified Monte Carlo method of Li and
Scheraga46 with an adaptive temperature sched-

47 Žule. A total of six Monte Carlo runs each of 1000
steps with 70 unconstrained ECEPPr2 energy min-

.imizations per step were performed using the
Metropolis criterion, each with different tempera-
ture schedule to enhance conformational space
sampling. The initial and minimal temperatures,
and temperature increment were equal to: 300 K,

Ž . Ž .5 K, 600 K run 1 ; 100 K, 5 K, 200 K run 2 ; 500 K,
Ž . Ž .5 K, 1000 K run 3 ; 1000 K, 300 K, 1000 K run 4 ;

Ž .2000 K, 1000 K, 1000 K run 5 ; and 15,000 K,
Ž .10,000 K, 5000 K run 6 . Energy was minimized

˚by the Newton]Raphson algorithm with 8-A cut-
off for the nonbonding pair list, which was up-
dated every 10 minimization steps. This minimizer
reduced the length of gradient below 0.01% of its
initial value in 99% of structures. The parameters
for the minimization, s , r, and t , were set to 0.5,
0.3, and 0.1, respectively.34 The Lennard]Jones po-
tential was smoothed for nonbonding distances

˚smaller than 2 A to avoid numeric overflow. The
dielectric constant was proportional to interatomic
distances. The backbone angles f and c were
allowed to change within a range of "108, the
side-chain angles were contained within a "908
range. Only one randomly chosen angle was
changed per Monte Carlo step. The numbers of
conformations found in each Monte Carlo run were
43, 18, 72, 66, 169, and 637, respectively. The low-
est energy conformations were found in run 3. The
resulting 1005 conformations were combined into
a single file. The RMS deviations from the native
structure of APP were characterized by a nonuni-
form distribution in two large clusters ranging

˚ ˚ ˚ ˚from 1 A to 3.5 A and 4.6 A to 6.2 A, respectively.
The ensemble was reduced to 268 distinct confor-
mations by eliminating configurations that were

Žsimilar or identical maximum angular backbone
and side-chain variance were less than 88 and 108,
respectively, and their energy difference was less

.than 300 kcalrmol . This ensemble roughly corre-
sponds to a subset of distinct local minima on the

ECEPPr2 energy hypersurface. It preserves the
overall energy]RMSD distribution of the original
1005 structures and is characterized by positive
correlation between backbone and heavy atoms
RMSD.

The 268 conformations were subsequently mini-
mized by a conjugate gradient algorithm with each
of the ‘‘ECEPPr2 q solvent’’ functions.12, 28 The
minimization iterations were stopped if the length
of the gradient vector reached 1% of its initial

Ž .value ; 90% of structures or until the conjugate
gradient minimizer could not reduce the energy
value after 10,000 steps. In the latter case, the
relative final value of gradient was usually below
10%. All other minimization parameters were
equal to those used in the minimization of
ECEPPr2 energy function.

Results

TESTING CORRECTNESS AND
PERFORMANCE OF GETAREA

The analytical gradient was tested for Met-en-
Ž . Žkephalin 5-residue peptide and tendamistat 74-

.residue protein against the numerically estimated
first derivatives of solvation energy:

Ž . Ž .D E E c q Dc y E c y Dch y d h y d i i h y d i i Ž .' 42
Dc 2Dci i

where c stands for an ith dihedral angle. Thei
average relative differences were calculated as the
RMS error:

2N ­ E D Eh y d h y dyÝ) ž /­c Dci iis1Ž . Ž .D E , Dc ' 43h y d
2N D Eh y dÝ) ž /Dciis1

where N is the number of dihedral angles. The
tests were performed with all heavy-atom atomic

˚solvation parameters equal to 1.0 kcalrmol ? A.
The good agreement between the analytical and

Ž .numerical gradients Table II demonstrated that
our approach and implementation is correct.

As a second test, we compared the results of
energy minimizations for the two peptides with
the new routine GETAREA in FANTOM 4.0 to the
previously used surface routine PARAREA in
FANTOM 3.5 using the same solvation parameters
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TABLE II.
Comparison of Numerical and Analytical Gradients
of Solvation Energies for Met-Enkephalin and
Tendamistat.

a bŽ .Molecule Dc D E , Dci hyd i

y 6Met-enkephalin 0.0001 1.77 = 10
y60.01 7.14 = 10
y21.0 6.84 = 10
y8Tendamistat 0.0001 5.11 = 10
y50.01 9.62 = 10
y11.0 7.83 = 10

aDihedral angle increments in degrees.
bRelative average difference between analytical and numeri-

( )cal gradients as defined in eq. 43 .

as before. The results from both methods were
identical; the final structures of Met-enkephalin

Žminimized with FANTOM 3.5 and 4.0 two dis-
tinct starting conformations, final gradient values

˚.below 0.05 kcalrmol ? A differed by 0.0015
˚kcalrmol and 0.0025 kcalrmol, and 0.00 A RMSD

˚and 0.01 A RMSD, respectively. After 500 con-
jugate gradient steps of energy minimization of
tendamistat with both versions of FANTOM the
resulting structures deviated from each other by

˚2.1 kcalrmol and 0.07 A RMSD.
Convergence of energy minimizations in FAN-

TOM 4.0 with the new surface routine to small
final gradient values was tested in two energy
minimizations of Met-enkephalin for all three-
parameter sets in Table I. Starting from two dif-

ferent structures with gradient values of a few
hundred kilocalories per mole per angstrom, the
gradient values were reduced in all six runs below

˚0.01 kcalrmol ? A in less than 250 conjugate gradi-
ent iterations.

The improvement in CPU time of our new rou-
tine was tested with the peptide Met-enkephalin

Ž .and the protein tendamistat Table III . The aver-
age CPU time per one routine invocation was a
factor of 2.2 and 3.2 less in GETAREA compared
with PARAREA, where the difference in perfor-
mance can be attributed to the larger average
number of atomic neighbors in tendamistat. The
improvement of overall FANTOM performance,
by a factor of about 1.9, was observed for both
molecules with GETAREA. In comparison to en-
ergy minimization in vacuo, inclusion of solvent in
FANTOM 4.0 requires only 1.66 and 0.71 times
more CPU time for Met-enkephalin and tendami-
stat, respectively. Analogous factors for FANTOM
3.5 were equal to 3.51 and 2.29.

We then compared the performance of GET-
AREA to that of two fast, approximate programs
for calculating molecular surface area and its gra-

22 23 Ž .dient: MSEED and SASAD Table IV . Accessi-
ble surface areas and their gradients were calcu-

Žlated for a set of five proteins 4PTI, 6LYZ, 2PTN,
44 .1RHD, and 1MCP used previously to demon-

strate the performance of SASAD.23 Atomic radii
and solvation parameters were the same for every
input protein. Program SASAD was run at two
different accuracy levels distinguished by different
initial COI point densities: 12 and 24. Four levels
of density doubling23 were used in each case re-

TABLE III.
CPU Times Required for Surface Routines GETAREA and PARAREA.

Met-enkephalin Tendamistat
a a a aPARAREA GETAREA PARAREA GETAREA

b( )Total CPU time s 33.4 17.8 823 437
CPU time spent in 26.0 11.1 573 182

c( )surface routine s
Number of routine 1302 1215 1349 1382
invocations
CPU time per 0.020 0.009 0.425 0.132

( )invocation s
( )Ratio P / G 2.22 3.22

aAll tests performed on a Silicon Graphics Indigo 2 workstation with a 195-MHz MIPS R10000 microprocessor. The SGI MIPSPro
F77 compiler was used in each case with the same floating point precision of REAL)8 and the -64 -O2 optimization level.
b ( )Measurements were taken during 500 max steps of conjugate gradient ECEPP / 2 + E minimization.hyd
c ( )CPU time was obtained by reference to the system function DTIME SGI MIPSPro F77 .
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TABLE IV.
Comparison of GETAREA to SASAD and MSEED in Accuracy and Efficiency.

aMolecule

Test Method 4PTI 6LYZ 2PTN 1RHD 1MCP

b ( ) ( ) ( ) ( ) ( ) ( )Area SASAD 4,12 0.21 1.80 0.16 1.58 0.15 1.39 0.16 1.70 0.15 2.37
( ) ( ) ( ) ( ) ( )MSEED 0.35 43.3 0.17 43.2 0.08 43.1 0.10 43.6 0.04 43.7

c d( ) ( ) ( ) ( ) ( ) ( )Gradient SASAD 4,12 3.6 100 3.4 152 5.3 788 3.2 154 6.1 7470
e( ) ( ) ( ) ( ) ( ) ( )SASAD 4,24 1.8 100 2.2 431 2.5 287 1.6 113 3.1 3724

( ) ( ) ( ) ( ) ( )MSEED 4.3 251 5.2 693 6.5 342 4.4 461 2.7 247
fCPU time GETAREA 0.37 0.86 1.49 2.10 3.14

( )SASAD 4,12 0.21 0.47 0.78 1.13 1.68
( )SASAD 4,24 0.27 0.61 1.04 1.47 2.19

MSEED 0.25 0.48 0.79 1.30 1.80
Number of atoms 454 1001 1629 2325 3401

aBrookhaven protein structure code.4 4

b ( )Average absolute deviation of surface area per atom in sq. angstroms calculated with eq. 44 . Numbers in parentheses represent
the largest absolute deviation.
c ( )Average relative deviation of Cartesian gradients per atom in percent calculated with eq. 45 . Numbers in parentheses represent
the largest relative deviation.
d ( )SASAD 4,12 : 12 initial COI points with four levels of density doubling.
e ( )SASAD 4,24 : 24 initial COI points with four levels of density doubling.
fCPU time in seconds. All tests were performed on a Silicon Graphics Indigo 2 workstation with a 195-MHz MIPS R10000
microprocessor. CPU times used to read input files from disk were excluded from each test. The SGI MIPSPro F77 compiler was
used in each case with the same floating point precision of REAL)8 and the -64 -O3 optimization level.

sulting in 192 and 384 final COI points referred to
Ž . Ž .as SASAD 4,12 and SASAD 4,24 , respectively.

The efficiency of GETAREA is within a factor of
two that of the efficiency of the fast approximate
methods.

The relative performance depends on compiler
options. Figure 5 presents the typical test results
for BPTI calculated with all optimization options
available in 32-bit and 64-bit compilation modes.
Table IV lists CPU times for all proteins at the
fastest -64 -O3 level of optimization. In particular,
if one assumes that unoptimized runs illustrate the

Žefficiency of the FORTRAN code itself -O0 in Fig.
.5 , then the GETAREA algorithm becomes compa-

rable in performance to that of SASAD and MSEED.
The accuracy of surface area calculations was

estimated by an average absolute deviation per
Ž .atom Table IV :

N1
G aŽ . < < Ž .D A ' A y A 44Ý i iN is1

where N denotes number of atoms and A is thei
ASA. Superscripts ‘‘G’’ and ‘‘a’’ denote results
obtained with GETAREA and an approximate
method, respectively. The accuracy of Cartesian
gradients of solvation energy was calculated as an

average relative deviation per atom:

G a­ E ­ Eh y d h y dy
N ­ x ­ x1 i iŽ . Ž .D ­ E ' 45Ýh y d GN ­ Eh y dis1

­ x i

where x is the position of an ith atom. Table IVi
shows that surface areas calculated by SASAD and
MSEED consistently deviate from exact values by

˚20.04]0.35 A ratom for all test proteins, whereby
the source of their errors differs. MSEED22 system-
atically ignores surface area of cavities and fully
exposed circles of intersection, while taking into
account only the outermost molecular surface de-
fined by a single walk of a test probe along par-

˚2tially exposed COIs. The largest deviation of 43 A
is due to neglecting the buried surface areas of the
end atoms of arginine side chains. SASAD calcu-
lates solvent-accessible surface area numerically,
by the Shrake]Rupley method with 482 test points
on a template sphere.48 The results of gradient
calculations by SASAD and MSEED consistently
deviate from exact values by 3]6% and 2]3%,
respectively. Typical gradient error distribution
histograms are shown in Figure 6. While the error
of SASAD’s numerical algorithm has a random
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FIGURE 5. Comparison of the performance of surface
routines depending on the FORTRAN compiler’s level of

( )optimization, increasing from -O0 no optimization to
( )-O3 aggressive optimization . Tests were performed on

Silicon Graphics Indigo 2 workstation equipped with a
195-MHz MIPS R10000 microprocessor and MIPSPro
FORTRAN 77 compiler, version 7.0. The same
floating-point precision of REAL)8 was used in each
case. Disk I / O processing times were excluded. Each
program calculated surface area and its gradient of BPTI
( 44)Brookhaven code 4PTI . Program SASAD was tested

( ) ( )at two levels of accuracy: 1 SASAD 4,12 , 12 initial COI
( ) ( )points; and 2 SASAD 4,24 , 24 initial COI points. Four

levels of density doubling were used in both cases.
( )a Codes compiled in the old 32-bit Application Binary

( ) ( )Interface MIPS2 ABI mode. b Codes compiled in the
64-bit MIPS4 ABI mode.

nature, the vast majority of MSEED atomic gradi-
Ž .ents are either exact first bin or accurate within

y3 Ž .10 % second bin and only few tens of surface
atoms have gradients deviating by 100% or more.

In summary, GETAREA is an exact analytical
ASA routine with similar CPU time requirements
as fast approximate algorithms. It surpasses them,
however, when the accuracy and internal consis-

FIGURE 6. Typical histograms of RMS error distribution
of the individual atomic surface gradients. First bin counts
RMS errors exactly equal to zero, each subsequent bin
represents an interval of 5%. Data shown here were

( ) ( )calculated for 1MCP by SASAD 4,12 upper graph and
( )MSEED lower graph .

tency of numerical calculations are considered—
important factors for practical applications such as
molecular energy minimization. In our experience,
even very small gradient perturbations can pre-
vent a minimizer from reaching a local energy
minimum. Moreover, during minimization, evalu-
ations of both the accessible surface area and its
gradient are necessary. Therefore, it is highly im-
perative to perform consistent area and gradient
calculations within the same algorithm.

CONFORMATIONAL DEPENDENCE ON
ATOMIC SOLVATION PARAMETERS:
STUDIES OF AVIAN PANCREATIC
POLYPEPTIDE

It was previously shown that including the
atomic solvation energy term in energy refine-
ment or folding of proteins can drive perturbed
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or unfolded 3D structures toward the native
structure.12, 28, 34, 49 In this study we investigate the
distribution of local minima with low energies
with and without solvent for the small 36-residue
protein, APP.43 The X-ray crystal structure of APP
is compact and stable, although it has no disulfide
bridges. An antiparallel polyproline-like helix of
residues 2 to 8 is packed against an a-helix formed
by residues 14 to 31. Spectroscopic data indicate
that hydrophobic interactions between these two
segments stabilize the X-ray conformation also in
aqueous solution.43, 50 In the X-ray crystal lattice
a zinc ion is coordinated to Gly1, Asn23, and
His34 of three different symmetry-related protein
molecules.

We have determined the effect of solvation
energy terms on shifting local minima of the
ECEPPr2 energy function.51 Energy values in
vacuo and in solution with all three solvation pa-

Žrameter sets, APOLAR, OONS, and WWE Table
.I , were calculated for all 268 local energy minima

conformations described earlier, and correlated
with the backbone root-mean-square deviation
Ž . Ž .RMSD from the crystal structure Fig. 7 . The
conformation with the lowest in vacuo energy value

˚of y414 kcalrmol deviates by 2.9 A from the
crystal structure. All three solvent energy terms
clearly favor the native, indicated by the diamond
in the figure, or native-like structures with low
energy values. For the OONS and WWE parameter

FIGURE 7. Solvation energy vs. backbone RMSD plot
calculated using parameters APOLAR, OONS, and WWE
from Table I for 268 in vacuo structures. The diamond
corresponds to the native structure. In vacuo energy plot
is included for comparison.

set, the native structure has the lowest solvent
energy value and, for the APOLAR parameter set,
similar low solvent energies were found for the
native and native-like structures deviating by

˚about 2 A RMSD. The difference in solvation en-
ergy between the native structure and the second
lowest energy value was most pronounced in the
WWE parameter set. Continuum solvation models
can, therefore, reasonably differentiate between
native and nonnative structures of APP, and show
approximately a ‘‘funnel-like’’ relationship be-
tween the energy and the deviation from the na-
tive structure.52 These results coincide with the
observations reported by Vila for BPTI.49

The addition of the solvent term to the ECEPPr2
energy term should therefore improve the
energy]RMSD relation. However, ECEPPr2 local
minima conformations are generally not local min-
ima conformations for the total energy including
solvation terms. Therefore, we have minimized the
total energy for the three parameter sets. The dis-
tribution of the local minima is shown in Figure 8.
There are a minimal effect on the distribution of
APOLAR local minima conformations as com-
pared with the minima in vacuo. The conformation

˚with the lowest total energy deviates about 2.9 A
from the crystal structure, similar to the conforma-
tion with the lowest energy in vacuo. The distribu-
tions significantly improved for the WWE and the
OONS parameter sets, as compared with the dis-

FIGURE 8. Total energy vs. backbone RMSD plots for
268 structures after minimizing ECEPP / 2 plus the
solvation energy term using parameters from Table I.
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tribution in vacuo. The conformation with lowest
˚energies shifted within about a 2-A deviation from

the native structure.
The range of APOLAR solvent energy values of

about 10 kcalrmol observed in the initial confor-
mations is not sufficient to substantially change
the energy surface. Previous work for the proteins
BPTI, tendamistat, and the pheromone Er-1027, 28

indicated that increasing the weight of APOLAR
solvent energy terms might drive nonnative struc-
tures toward the native structure. This procedure
applied to APP lead to severe distortions of the
a-helix, as we did not apply secondary structure

Ž .restraints data not shown .
The four conformations with lowest energies

after minimization in vacuo and for the three sol-
vent terms, APOLAR, OONS, and WWE, are
shown in Figure 9a]d. In all four conformations,
the topology of the native structure is reproduced,

a remarkable result, as the initial structures devi-
˚ate from the native structure by up to 6 A back-

bone RMSD. The major differences to the X-ray
crystal structure occur near the N- and C-termini.
Similar results for APP have been obtained from
electrostatically driven Monte Carlo simulations
Ž . 53EDMC with ECEPPr2 potential by Liwo et al.
Large deviations from the native structure were
also found by molecular dynamics simulations
with the OPLSrAmber force field with a contin-
uum solvation term.54 The relatively large RMSD
may result in part from the presence of zinc ion in
the crystal structure. The two lowest energy struc-
tures of the OONS and the WWE energy minima
are remarkably similar to the native structures in
the polyproline and the a-helical region. In con-
trast to the in vacuo and the APOLAR low energy
conformations, they show an electrostatic attrac-
tion between the N- and C-termini.

( ) ( )FIGURE 9. Lowest energy structures thick lines superposed on the regularized crystal structure of APP thin lines .
Backbone atoms of all residues were used in the superposition. The same orientation of the crystal structure was

( ) ( ) ( ) ( )preserved in each case. The following energy functions were used see Table I : a ECEPP / 2; b APOLAR; c OONS;
( ) 55and d WWE. Pictures were generated with the program MOLMOL.
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Conclusions

The new version of FANTOM makes energy
minimization, including solvation energy terms,
almost as fast as energy minimization in vacuo.
The additional computational cost for the calcula-
tion with solvent amounts to 70]160% of the CPU
time for the in vacuo calculations. Several contin-
uum solvation models were tested for their capa-
bility to characterize native or near-native struc-
tures as local minima with low energy values, and
differentiate them from nonnative folds. In energy
minimizations of 268 conformations deviating from

˚the native structure by as much as 6 A RMSD for
backbone atoms, the conformation with the lowest
energy had the correct topology in calculations
with all three solvation parameter sets. The main
differences were found at the protein termini. All
three solvation energy terms showed a good en-
ergy]RMSD correlation in this ensemble of confor-
mations. The native structure had low solvation
energy values in all three cases. It had a signifi-
cantly lower solvation energy among all sampled
conformations; that is, 11 kcalrmol lower than the
second lowest value in the Wesson and Eisenberg
parameter set.29 The conformation with lowest to-
tal energy value was considerably improved for
the empirically derived parameters from Ooi et al.5

and from Wesson and Eisenberg.29 We are now
extending our study to several other proteins. The
new version of FANTOM can be requested from
the corresponding author.
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